This work discusses the theoretical abilities of three commonly used classifier learning methods and optimization techniques to cope with characteristics of real-world classification problems, more specifically varying misclassification costs, imbalanced data sets and varying degrees of hardness of class boundaries. From these discussions a universally applicable optimization framework is derived that successfully corrects the error-based inductive bias of classifier learning methods on image data within the domain of medical diagnosis. The framework was designed considering several points...
This work discusses the theoretical abilities of three commonly used classifier learning methods and optimization techniques to cope with characterist...