Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B, t? 0; F, t? 0, P) - t t note a standard Brownian motion with B = 0, (F, t? 0) being its natural ?ltra- 0 t t tion. Let E: = exp B?, t? 0 denote the exponential martingale associated t t 2 to (B, t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t): =E (K?E ) (0.1) K t and + C (t): =E (E?K) (0.2) K t denote respectively the price of a European put,...
Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B, t? 0; F, ...
Francis Hirsch, Christophe Profeta, Bernard Roynette, Marc Yor
We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock.In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings. They are developed in...
We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep t...
Francis Hirsch, Christophe Profeta, Bernard Roynette, Marc Yor
We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings. They are developed in...
We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep t...