Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we prove this result without first proving that one? Can a computer solve this problem? A highly active part of mathematical logic and computability theory, the subject offers beautiful results as well as significant foundational insights.
This text provides a modern treatment of reverse mathematics that combines computability theoretic reductions and proofs in formal arithmetic to measure the complexity of theorems and problems from all...
Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we pr...
Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we prove this result without first proving that one? Can a computer solve this problem? A highly active part of mathematical logic and computability theory, the subject offers beautiful results as well as significant foundational insights.
This text provides a modern treatment of reverse mathematics that combines computability theoretic reductions and proofs in formal arithmetic to measure the complexity of theorems and problems from all...
Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we pr...