The book discusses a class of discrete time stochastic growth processes for which the growth rate is proportional to the exponential of a Gaussian Markov process. These growth processes appear naturally in problems of mathematical finance as discrete time approximations of stochastic volatility models and stochastic interest rates models such as the Black-Derman-Toy and Black-Karasinski models. These processes can be mapped to interacting one-dimensional lattice gases with long-range interactions.
The book gives a detailed discussion of these statistical mechanics models,...
The book discusses a class of discrete time stochastic growth processes for which the growth rate is proportional to the exponential of a Gaussian ...