CLAUDIO BARTOCCI, Ugo Bruzzo, Daniel Hernández Ruipérez
Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three decades the development of a number of novel ideas in algebraic geometry, category theory, gauge theory, and string theory has been closely related to generalizations of integral transforms of a more geometric character.
"Fourier Mukai and Nahm Transforms in Geometry and Mathematical Physics" examines the algebro-geometric approach (Fourier Mukai functors) as well as the differential-geometric constructions (Nahm). Also included is a...
Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three...
Geometry, if understood properly, is still the closest link between mathematics and theoretical physics, even for quantum concepts. In this collection of outstanding survey articles the concept of non-commutation geometry and the idea of quantum groups are discussed from various points of view. Furthermore the reader will find contributions to conformal field theory and to superalgebras and supermanifolds. The book addresses both physicists and mathematicians.
Geometry, if understood properly, is still the closest link between mathematics and theoretical physics, even for quantum concepts. In this collection...