Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling forControl addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic...
Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively...
H. B. Verbruggen, Hans-Jürgen Zimmermann, Robert Babuška
Fuzzy Algorithms for Control gives an overview of the research results of a number of European research groups that are active and play a leading role in the field of fuzzy modeling and control. It contains 12 chapters divided into three parts. Chapters in the first part address the position of fuzzy systems in control engineering and in the AI community. State-of-the-art surveys on fuzzy modeling and control are presented along with a critical assessment of the role of these methodologists in control engineering. The second part is concerned with several analysis and...
Fuzzy Algorithms for Control gives an overview of the research results of a number of European research groups that are active and play a lea...