The subspace approach in speech signal analysis is commonly associated with the deployment of the singular value decomposition (SVD), or equivalently the eigendecomposition, to reveal useful subspace information about the signal of interest. The general premise that information in speech signals is almost completely contained in a lower dimensional subspace of the measurement space underscores their principal role in detecting the desired signal subspace. These ideas, which have been vigorously researched for speech enhancement problems, inspire the notion of a signal subspace model. Signal...
The subspace approach in speech signal analysis is commonly associated with the deployment of the singular value decomposition (SVD), or equivalently ...