Leon Ehrenpreis has been one of the leading mathematicians in the twentieth century. His contributions to the theory of partial differential equations were part of the golden era of PDEs, and led him to what is maybe his most important contribution, the Fundamental Principle, which he announced in 1960, and fully demonstrated in 1970. His most recent work, on the other hand, focused on a novel and far reaching understanding of the Radon transform, and offered new insights in integral geometry. Leon Ehrenpreis died in 2010, and this volume collects writings in his honor by a cadre of...
Leon Ehrenpreis has been one of the leading mathematicians in the twentieth century. His contributions to the theory of partial differential equations...
This book presents English translations of Michele Sce’s most important works, originally written in Italian during the period 1955-1973, on hypercomplex analysis and algebras of hypercomplex numbers. Despite their importance, these works are not very well known in the mathematics community because of the language they were published in. Possibly the most remarkable instance is the so-called Fueter-Sce mapping theorem, which is a cornerstone of modern hypercomplex analysis, and is not yet understood in its full generality.
This volume is dedicated to revealing and describing the...
This book presents English translations of Michele Sce’s most important works, originally written in Italian during the period 1955-1973, on hype...
Graziano Gentili Caterina Stoppato Daniele C. Struppa
This book surveys the foundations of the theory of slice regular functions over the quaternions, introduced in 2006, and gives an overview of its generalizations and applications. As in the case of other interesting quaternionic function theories, the original motivations were the richness of the theory of holomorphic functions of one complex variable and the fact that quaternions form the only associative real division algebra with a finite dimension n>2. (Slice) regular functions quickly showed particularly appealing features and developed into a full-fledged theory, while finding...
This book surveys the foundations of the theory of slice regular functions over the quaternions, introduced in 2006, and gives an overview of its gene...
Gentili, Graziano, Stoppato, Caterina, Daniele C. Struppa
This book surveys the foundations of the theory of slice regular functions over the quaternions, introduced in 2006, and gives an overview of its generalizations and applications.
As in the case of other interesting quaternionic function theories, the original motivations were the richness of the theory of holomorphic functions of one complex variable and the fact that quaternions form the only associative real division algebra with a finite dimension n>2. (Slice) regular functions quickly showed particularly appealing features and developed into a full-fledged theory, while...
This book surveys the foundations of the theory of slice regular functions over the quaternions, introduced in 2006, and gives an overview of its g...