The objective of this work is the experimental study of the effect of inhomogeneous magnetic-field-aligned (parallel) ion drift on the destabilization and propagation of electrostatic ion waves. Such inhomogeneous ion velocity is created in the cylindrical barium plasma column produced in a Q-machine. Noninvasive measurements of the ion velocity distribution are performed using the laser-induced fluorescence technique. Multi-harmonic ion cyclotron waves are identified, and experimental evidence is presented that ion cyclotron damping can become inverted to result in net wave growth. For...
The objective of this work is the experimental study of the effect of inhomogeneous magnetic-field-aligned (parallel) ion drift on the destabilization...