Nonlinear Dynamics represents a wide interdisciplinary area of research dealing with a variety of "unusual" physical phenomena by means of nonlinear differential equations, discrete mappings, and related mathematical algorithms. However, with no real substitute for the linear superposition principle, the methods of Nonlinear Dynamics appeared to be very diverse, individual and technically complicated. This book makes an attempt to find a common ground for nonlinear dynamic analyses based on the existence of strongly nonlinear but quite simple counterparts to the linear models and tools. It is...
Nonlinear Dynamics represents a wide interdisciplinary area of research dealing with a variety of "unusual" physical phenomena by means of nonlinear d...
Nonlinear Dynamics represents a wide interdisciplinary area of research dealing with a variety of "unusual" physical phenomena by means of nonlinear differential equations, discrete mappings, and related mathematical algorithms. However, with no real substitute for the linear superposition principle, the methods of Nonlinear Dynamics appeared to be very diverse, individual and technically complicated. This book makes an attempt to find a common ground for nonlinear dynamic analyses based on the existence of strongly nonlinear but quite simple counterparts to the linear models and tools. It is...
Nonlinear Dynamics represents a wide interdisciplinary area of research dealing with a variety of "unusual" physical phenomena by means of nonlinear d...
Nonlinear Dynamics represents a wide interdisciplinary area of research dealing with a variety of “unusual” physical phenomena by means of nonlinear differential equations, discrete mappings, and related mathematical algorithms. However, with no real substitute for the linear superposition principle, the methods of Nonlinear Dynamics appeared to be very diverse, individual and technically complicated. This book makes an attempt to find a common ground for nonlinear dynamic analyses based on the existence of strongly nonlinear but quite simple counterparts to the linear models and tools....
Nonlinear Dynamics represents a wide interdisciplinary area of research dealing with a variety of “unusual” physical phenomena by means of nonline...
This updated and enriched new edition maintains its complementarity principle in which the subgroup of rotations, harmonic oscillators, and the conventional complex analysis generate linear and weakly nonlinear approaches, whereas translations and reflections, impact oscillators, and hyperbolic Clifford’s algebras, give rise to the essentially nonlinear “quasi-impact” methodology based on the idea of non-smooth temporal substitutions. In the years since “Nonlinear Dynamics: Between Linear and Impact Limits,” the previous edition of this book, was published, due to a widening...
This updated and enriched new edition maintains its complementarity principle in which the subgroup of rotations, harmonic oscillators, and the c...