The purpose of these notes is to explore some simple relations between Markovian path and loop measures, the Poissonian ensembles of loops they determine, their occupation fields, uniform spanning trees, determinants, and Gaussian Markov fields such as the fre field. These relations are first studied in complete generality for the finite discrete setting, then partly generalized to specific examples in infinite and continuous spaces.
The purpose of these notes is to explore some simple relations between Markovian path and loop measures, the Poissonian ensembles of loops they determ...
This book presents fundamental relations between random walks on graphs and field theories of mathematical physics. Such relations have been explored for several decades and remain a rapidly developing research area in probability theory.
The main objects of study include Markov loops, spanning forests, random holonomies, and covers, and the purpose of the book is to investigate their relations to Bose fields, Fermi fields, and gauge fields. The book starts with a review of some basic notions of Markovian potential theory in the simple context of a finite or countable graph, followed...
This book presents fundamental relations between random walks on graphs and field theories of mathematical physics. Such relations have been explor...