The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a...
The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function woul...
This text introduces students to Hilbert space and bounded self-adjoint operators, as well as the spectrum of an operator and its spectral decomposition. The author, Emeritus Professor of Mathematics at the University of Innsbruck, Austria, has ensured that the treatment is accessible to readers with no further background than a familiarity with analysis and analytic geometry. Starting with a definition of Hilbert space and its geometry, the text explores the general theory of bounded linear operators, the spectral analysis of compact linear operators, and unbounded self-adjoint operators....
This text introduces students to Hilbert space and bounded self-adjoint operators, as well as the spectrum of an operator and its spectral decompositi...
Diese kompakte Einfuhrung in die analytischen Zahlentheorie wurde fur einen einsemestrigen Kurs fur Studierende der Mathematik an der Universitat Innsbruck konzipiert. Die lebhafte Darstellung und die enthaltenen notwendige Ergebnisse aus der Analysis, Funktionentheorie und Gruppentheorie erlauben ebenso die Benutzung zum Selbststudium, wie auch als Nachschlagewerk fur Mathematiker aus anderen Bereichen.
Diese kompakte Einfuhrung in die analytischen Zahlentheorie wurde fur einen einsemestrigen Kurs fur Studierende der Mathematik an der Universitat I...