This monograph is devoted to developing a theory of combined measure and shift invariance of time scales with the related applications to shift functions and dynamic equations. The study of shift closeness of time scales is significant to investigate the shift functions such as the periodic functions, the almost periodic functions, the almost automorphic functions, and their generalizations with many relevant applications in dynamic equations on arbitrary time scales.
First proposed by S. Hilger, the time scale theory—a unified view of continuous and discrete analysis—has...
This monograph is devoted to developing a theory of combined measure and shift invariance of time scales with the related applications to shift functi...
This book systematically establishes the almost periodic theory of dynamic equations and presents applications on time scales in fuzzy mathematics and uncertainty theory. The authors introduce a new division of fuzzy vectors depending on a determinant algorithm and develop a theory of almost periodic fuzzy multidimensional dynamic systems on time scales. Several applications are studied; in particular, a new type of fuzzy dynamic systems called fuzzy q-dynamic systems (i.e. fuzzy quantum dynamic systems) is presented. The results are not only effective on classical fuzzy dynamic systems,...
This book systematically establishes the almost periodic theory of dynamic equations and presents applications on time scales in fuzzy mathematics and...
This book presents fixed point theory, one of the crucial tools in applied mathematics, functional analysis, and topology, which has been used to solve distinct real-world problems in computer science, engineering, and physics. The authors begin with an overview of the extension of metric spaces. Readers are introduced to general fixed-point theorems while comparing and contrasting important and insignificant metric spaces. The book is intended to be self-contained and serves as a unique resource for researchers in various disciplines.
This book presents fixed point theory, one of the crucial tools in applied mathematics, functional analysis, and topology, which has been used to solv...