Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller.
Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems
The book presents two approaches for controller synthesis: the first based on passivity...
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and ...