The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy...
The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the h...
The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy...
The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the h...