Autonomous vehicles use global navigation satellite systems (GNSS) to provide a position within a few centimeters of truth. Centimeter positioning requires accurate measurement of each satellite's direct path propagation time. Multipath corrupts the propagation time estimate by creating a time-varying bias. A GNSS receiver model is developed and the effects of multipath are investigated. MATLABtm code is provided to enable readers to run simple GNSS receiver simulations. More specifically, GNSS signal models are presented and multipath mitigation techniques are described for various multipath...
Autonomous vehicles use global navigation satellite systems (GNSS) to provide a position within a few centimeters of truth. Centimeter positioning req...
This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep...
This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners...
The area of detection and estimation in a distributed wireless sensor network (WSN) has several applications, including military surveillance, sustainability, health monitoring, and Internet of Things (IoT). Compared with a wired centralized sensor network, a distributed WSN has many advantages including scalability and robustness to sensor node failures. In this book, we address the problem of estimating the structure of distributed WSNs. First, we provide a literature review in: (a) graph theory; (b) network area estimation; and (c) existing consensus algorithms, including average consensus...
The area of detection and estimation in a distributed wireless sensor network (WSN) has several applications, including military surveillance, sustain...
The Kalman filter is the Bayesian optimum solution to the problem of sequentially estimating the states of a dynamical system in which the state evolution and measurement processes are both linear and Gaussian. Given the ubiquity of such systems, the Kalman filter finds use in a variety of applications, e.g., target tracking, guidance and navigation, and communications systems. The purpose of this book is to present a brief introduction to Kalman filtering. The theoretical framework of the Kalman filter is first presented, followed by examples showing its use in practical applications....
The Kalman filter is the Bayesian optimum solution to the problem of sequentially estimating the states of a dynamical system in which the state evolu...
This book describes several modules of the Code Excited Linear Prediction (CELP) algorithm. The authors use the Federal Standard-1016 CELP MATLAB (R) software to describe in detail several functions and parameter computations associated with analysis-by-synthesis linear prediction. The book begins with a description of the basics of linear prediction followed by an overview of the FS-1016 CELP algorithm. Subsequent chapters describe the various modules of the CELP algorithm in detail. In each chapter, an overall functional description of CELP modules is provided along with detailed...
This book describes several modules of the Code Excited Linear Prediction (CELP) algorithm. The authors use the Federal Standard-1016 CELP MATLAB (R) ...
This book provides an introduction to narrowband array signal processing, classical and subspace-based direction of arrival (DOA) estimation with an extensive discussion on adaptive direction of arrival algorithms. The book begins with a presentation of the basic theory, equations, and data models of narrowband arrays. It then discusses basic beamforming methods and describes how they relate to DOA estimation. Several of the most common classical and subspace-based direction of arrival methods are discussed. The book concludes with an introduction to subspace tracking and shows how subspace...
This book provides an introduction to narrowband array signal processing, classical and subspace-based direction of arrival (DOA) estimation with an e...
The MPEG-1 Layer III (MP3) algorithm is one of the most successful audio formats for consumer audio storage and for transfer and playback of music on digital audio players. The MP3 compression standard along with the AAC (Advanced Audio Coding) algorithm are associated with the most successful music players of the last decade. This book describes the fundamentals and the MATLAB implementation details of the MP3 algorithm. Several of the tedious processes in MP3 are supported by demonstrations using MATLAB software. The book presents the theoretical concepts and algorithms used in the MP3...
The MPEG-1 Layer III (MP3) algorithm is one of the most successful audio formats for consumer audio storage and for transfer and playback of music on ...
Compressed sensing (CS) allows signals and images to be reliably inferred from undersampled measurements. Exploiting CS allows the creation of new types of high-performance sensors including infrared cameras and magnetic resonance imaging systems. Advances in computer vision and deep learning have enabled new applications of automated systems. In this book, we introduce reconstruction-free compressive vision, where image processing and computer vision algorithms are embedded directly in the compressive domain, without the need for first reconstructing the measurements into images or video....
Compressed sensing (CS) allows signals and images to be reliably inferred from undersampled measurements. Exploiting CS allows the creation of new typ...
Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open problem. As sensing and monitoring technology continues to improve, there is an opportunity to deploy sensors in PV arrays in order to improve their management. In this book, we examine the potential role of sensing and monitoring technology in a PV context, focusing on the areas of fault detection, topology optimization, and performance evaluation/data visualization. First, several types of commonly occurring PV array faults are considered and...
Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open probl...