This volume consists primarily of survey papers that evolved from the lectures given in the school portion of the meeting and selected papers from the conference. Knot theory is a very special topological subject: the classification of embeddings of a circle or collection of circles into three-dimensional space. This is a classical topological problem and a special case of the general placement problem: Understanding the embeddings of a space X in another space Y. There have been exciting new developments in the area of knot theory and 3-manifold topology in the last 25 years. From the Jones,...
This volume consists primarily of survey papers that evolved from the lectures given in the school portion of the meeting and selected papers from the...
This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas. The book is divided...
This invaluable book is an introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of knot theory...