Traditionally, engineers have used laboratory testing to investigate the behavior of metal structures and systems. These numerical models must be carefully developed, calibrated and validated against the available physical test results. They are commonly complex and very expensive. From concept to assembly, Finite Element Analysis and Design of Metal Structures provides civil and structural engineers with the concepts and procedures needed to build accurate numerical models without using expensive laboratory testing methods. Professionals and researchers will find Finite Element...
Traditionally, engineers have used laboratory testing to investigate the behavior of metal structures and systems. These numerical models must be c...
In recent years, bridge engineers and researchers are increasingly turning to the finite element method for the design of Steel and Steel-Concrete Composite Bridges. However, the complexity of the method has made the transition slow. Based on twenty years of experience, Finite Element Analysis and Design of Steel and Steel-Concrete Composite Bridges provides structural engineers and researchers with detailed modeling techniques for creating robust design models. The book's seven chapters begin with an overview of the various forms of modern steel and steel-concrete composite bridges...
In recent years, bridge engineers and researchers are increasingly turning to the finite element method for the design of Steel and Steel-Concrete ...