Richard J. Butler Matthew J. Butler Barbara L. Wilson
Advanced Statistics for Health Research provides a rigorous geometric understanding of models used in the analysis of health data, including linear and non-linear regression models, and supervised machine learning models. Models drawn from the health literature include: ordinary least squares, two-stage least squares, probits, logits, Cox regressions, duration modeling, quantile regression and random forest regression. Causal inference techniques from the health literature are presented including randomization, matching and propensity score matching, differences-in-differences, instrumental...
Advanced Statistics for Health Research provides a rigorous geometric understanding of models used in the analysis of health data, including linear an...