This book offers an introduction to applied statistics through data analysis, integrating statistical computing methods. It covers robust and non-robust descriptive statistics used in each of four bivariate statistical models that are commonly used in research: ANOVA, proportions, regression, and logistic. The text teaches statistical inference principles using resampling methods (such as randomization and bootstrapping), covering methods for hypothesis testing and parameter estimation. These methods are applied to each statistical model introduced in preceding chapters.Data analytic examples...
This book offers an introduction to applied statistics through data analysis, integrating statistical computing methods. It covers robust and non-robu...