This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered--from introductory theory to algorithmic implementations and some statistical case studies--is meant to familiarize graduate students with an array of tools that are relevant in...
This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, wit...