Several studies have attempted to improve the accuracy in dependency parsing by including information about word clusters into the parsing models. The use of word clusters are typically motivated by the shortage of labeled training data and domain adaption, attempting to influence a parsing model for use on data from a new domain. This book shows the effect of using cluster-based features in MaltParser, a data-driven parser for inductive dependency parsing. Different clustering features are used for generating clusters, using the K-means clustering algorithm. The clusters are used as a source...
Several studies have attempted to improve the accuracy in dependency parsing by including information about word clusters into the parsing models. The...