Graphene is the first example of two-dimensional materials and is the most important growth area of contemporary research. It forms the basis for new nanoelectronic applications. Graphene, which comprises field-effect structures, has remarkable physical properties.
This book focuses on practical applications determined by the unique properties of graphene. Basic concepts are elucidated by end-of-chapter problems, the answers to which are provided in the accompanying solutions manual. The mechanisms of electric and thermal transport in the gated graphene, interface phenomena, quantum...
Graphene is the first example of two-dimensional materials and is the most important growth area of contemporary research. It forms the basis for n...
Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials describes thermoelectric phenomena and thermal transport in graphene and other 2-dimentional nanomaterials and devices. Graphene, which is an example of an atomic monolayered material, has become the most important growth area in materials science research, stimulating an interest in other atomic monolayeric materials.
The book analyses flow management, measurement of the local temperature at the nanoscale level and thermoelectric transducers, with reference to both graphene and other 2D...
Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials describes thermoelectric phenomena and thermal transport in grap...