This thesis approaches impact resistance in dense suspensions from a new perspective. The most well-known example of dense suspensions, a mixture of cornstarch and water, provides enough impact resistance to allow a person to run across its surface. In the past, this phenomenon had been linked to "shear thickening" under a steady shear state attributed to hydrodynamic interactions or granular dilation. However, neither explanation accounted for the stress scales required for a person to run on the surface.
Through this research, it was discovered that the impact resistance is due to...
This thesis approaches impact resistance in dense suspensions from a new perspective. The most well-known example of dense suspensions, a mixture o...
This thesis approaches impact resistance in dense suspensions from a new perspective. The most well-known example of dense suspensions, a mixture of cornstarch and water, provides enough impact resistance to allow a person to run across its surface. In the past, this phenomenon had been linked to "shear thickening" under a steady shear state attributed to hydrodynamic interactions or granular dilation. However, neither explanation accounted for the stress scales required for a person to run on the surface.
Through this research, it was discovered that the impact resistance is due to...
This thesis approaches impact resistance in dense suspensions from a new perspective. The most well-known example of dense suspensions, a mixture o...