This thesis tackles fundamental questions concerning the discharge of a pre-Pyrenean karst aquifer system and an Antarctic glacier system, utilizing a system engineering methodology and data-driven approach. It presents for the first time a simplified and effective linear transfer function for karst aquifers. The author provides detailed wavelet spectrum results, which reveal certain non-linearities in drought periods. In addition, structures based on Hammerstein-Wiener blocks have yielded a nonlinear model that is substantially more efficient than its linear counterparts.
Another...
This thesis tackles fundamental questions concerning the discharge of a pre-Pyrenean karst aquifer system and an Antarctic glacier system, utilizin...
This thesis tackles fundamental questions concerning the discharge of a pre-Pyrenean karst aquifer system and an Antarctic glacier system, utilizing a system engineering methodology and data-driven approach. It presents for the first time a simplified and effective linear transfer function for karst aquifers. The author provides detailed wavelet spectrum results, which reveal certain non-linearities in drought periods. In addition, structures based on Hammerstein-Wiener blocks have yielded a nonlinear model that is substantially more efficient than its linear counterparts.
Another...
This thesis tackles fundamental questions concerning the discharge of a pre-Pyrenean karst aquifer system and an Antarctic glacier system, utilizin...