Ge and III-V compounds, semiconductors with high carrier mobilities, are candidates to replace Si as the channel in MOS devices. 2D materials - like graphene and MoS_2 - are also envisioned to replace Si in the future.
This thesis is devoted to the first-principles modeling of the vibrational properties of these novel channel materials.
The first part of the thesis focuses on the vibrational properties of various oxides on Ge, making it possible to identify the vibrational signature of specific defects which could hamper the proper functioning of MOSFETs.
The second part...
Ge and III-V compounds, semiconductors with high carrier mobilities, are candidates to replace Si as the channel in MOS devices. 2D materials - lik...
Ge and III-V compounds, semiconductors with high carrier mobilities, are candidates to replace Si as the channel in MOS devices. 2D materials - like graphene and MoS_2 - are also envisioned to replace Si in the future.
This thesis is devoted to the first-principles modeling of the vibrational properties of these novel channel materials.
The first part of the thesis focuses on the vibrational properties of various oxides on Ge, making it possible to identify the vibrational signature of specific defects which could hamper the proper functioning of MOSFETs.
The second part...
Ge and III-V compounds, semiconductors with high carrier mobilities, are candidates to replace Si as the channel in MOS devices. 2D materials - lik...