Combinatorics and Algebraic Geometry have enjoyed a fruitful interplay since the nineteenth century. Classical interactions include invariant theory, theta functions and enumerative geometry. The aim of this volume is to introduce recent developments in combinatorial algebraic geometry and to approach algebraic geometry with a view towards applications, such as tensor calculus and algebraic statistics. A common theme is the study of algebraic varieties endowed with a rich combinatorial structure. Relevant techniques include polyhedral geometry, free resolutions, multilinear algebra,...
Combinatorics and Algebraic Geometry have enjoyed a fruitful interplay since the nineteenth century. Classical interactions include invariant theor...
This volume collects contributions by leading experts in the area of commutative algebra related to the INdAM meeting "Homological and Computational Methods in Commutative Algebra" held in Cortona (Italy) from May 30 to June 3, 2016 .
This volume collects contributions by leading experts in the area of commutative algebra related to the INdAM meeting "Homological and Computational ...
This book offers an up-to-date, comprehensive account of determinantal rings and varieties, presenting a multitude of methods used in their study, with tools from combinatorics, algebra, representation theory and geometry.After a concise introduction to Gröbner and Sagbi bases, determinantal ideals are studied via the standard monomial theory and the straightening law. This opens the door for representation theoretic methods, such as the Robinson–Schensted–Knuth correspondence, which provide a description of the Gröbner bases of determinantal ideals, yielding homological and enumerative...
This book offers an up-to-date, comprehensive account of determinantal rings and varieties, presenting a multitude of methods used in their study, wit...