This book treats state-of-the-art computational methods for power flow studies and contingency analysis. In the first part the authors present the relevant computational methods and mathematical concepts. In the second part, power flow and contingency analysis are treated. Furthermore, traditional methods to solve such problems are compared to modern solvers, developed using the knowledge of the first part of the book. Finally, these solvers are analyzed both theoretically and experimentally, clearly showing the benefits of the modern approach.
This book treats state-of-the-art computational methods for power flow studies and contingency analysis. In the first part the authors present the rel...
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts:
new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications.
The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but...
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: