In applications, and especially in mathematical finance, random time-dependent events are often modeled as stochastic processes. Assumptions are made about the structure of such processes, and serious researchers will want to justify those assumptions through the use of data. As statisticians are wont to say, "In God we trust; all others must bring data."
This book establishes the theory of how to go about estimating not just scalar parameters about a proposed model, but also the underlying structure of the model itself. Classic statistical tools are used: the law of large numbers, and...
In applications, and especially in mathematical finance, random time-dependent events are often modeled as stochastic processes. Assumptions are ma...