Prediction is a phenomenon of knowing what may happen to a system in the next coming time periods. Weather is a time series based, continuous, data-intensive, dynamic, and chaotic process.Due to dependence of weather on time series based data and non-linearity in climatic physics neural networks are suitable to predict meteorological processes. In the present research, firstly weather related data have been collected, weather parameters have been selected, N-Sliding window technique is applied, relations between dependent parameters are found and data has been normalized to feed to the...
Prediction is a phenomenon of knowing what may happen to a system in the next coming time periods. Weather is a time series based, continuous, data-in...
Weather plays a significant role in terms of life, property, agriculture and industry. Neural networks are capable of predicting the non-linear behavior of weather without the physics being explicitly explored. The most common method to train neural networks is through gradient decent based back propagation algorithm. But back propagation algorithm suffers from several disadvantages like local minima problem, slow training, and scaling problem. So the ways to solve these problems by hybridizing it with genetic algorithms. The hybrid technique can learn efficiently by combining the strengths...
Weather plays a significant role in terms of life, property, agriculture and industry. Neural networks are capable of predicting the non-linear behavi...