Background modeling and foreground detection are important steps in video processing used to detect robustly moving objects in challenging environments. This requires effective methods for dealing with dynamic backgrounds and illumination changes as well as algorithms that must meet real-time and low memory requirements.
Incorporating both established and new ideas, Background Modeling and Foreground Detection for Video Surveillance provides a complete overview of the concepts, algorithms, and applications related to background modeling and foreground...
Background modeling and foreground detection are important steps in video processing used to detect robustly moving objects in challenging environm...
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques.
Divided into five parts, the book begins with an overall introduction to robust principal component...
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subsp...