The algebraic theory of corner subrings introduced by Lam (as an abstraction of the properties of Peirce corners eRe of a ring R associated with an idempotent e in R) is investigated here in the context of Banach and C*-algebras. We propose a general algebraic approach which includes the notion of ranges of (completely) contractive conditional expectations on C*-algebras and on ternary rings of operators, and we investigate when topological properties are consequences of the algebraic assumptions. For commutative C*-algebras we show that dense corners cannot be proper and that self-adjoint...
The algebraic theory of corner subrings introduced by Lam (as an abstraction of the properties of Peirce corners eRe of a ring R associated with an id...