In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the curves on this surface. In order to do this one introduces various equivalence relations on the group of divisors (cycles of codimension one). One such relation is algebraic equivalence and we denote by NS(E) the group of divisors modulo algebraic equivalence which is called the N ron-Severi group of the surface E. This is known to be a finitely generated abelian group which can be regarded naturally as a subgroup of 2 H (E, Z). The rank of NS(E)...
In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the cur...