This book aims to provide a lively working knowledge of the thermodynamic control of microscopic simulations, while summarizing the historical development of the subject, along with some personal reminiscences. Many computational examples are described so that they are well-suited to learning by doing. The contents enhance the current understanding of the reversibility paradox and are accessible to advanced undergraduates and researchers in physics, computation, and irreversible thermodynamics.
This book aims to provide a lively working knowledge of the thermodynamic control of microscopic simulations, while summarizing the historical develop...
Julien Clinton Sprott William Graham Hoover Carol Griswold Hoover
A recent development is the discovery that simple systems of equations can have chaotic solutions in which small changes in initial conditions have a large effect on the outcome, rendering the corresponding experiments effectively irreproducible and unpredictable. An earlier book in this sequence, Elegant Chaos: Algebraically Simple Chaotic Flows provided several hundred examples of such systems, nearly all of which are purely mathematical without any obvious connection with actual physical processes and with very limited discussion and analysis.In this book, we focus on a much smaller subset...
A recent development is the discovery that simple systems of equations can have chaotic solutions in which small changes in initial conditions have a ...