Many problems in science and engineering have their mathematical formulation as an operator equation of the form F(x) = y, where F is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not be often possible or may not be worth looking for due to physical constraints. In such situation, it is desirable to know how the so-called approximate solution approximates the exact solution, and what would be the error involved in such procedures. The main focus of the book is on the...
Many problems in science and engineering have their mathematical formulation as an operator equation of the form F(x) = y, where F is a linear or nonl...