Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research...
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical ...
Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine explores musculoskeletal tissue growth and development across populations, ranging from elite athletes to the elderly. The regeneration and reparation of musculoskeletal tissues present the unique challenges of requiring both the need to withstand distinct forces applied to the body and ability to support cell populations.
The book is separated into sections based on tissue type, including bone, cartilage, ligament and tendon, muscle, and musculoskeletal tissue interfaces. Within each...
Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine explores musculoskeletal tissue growth and develo...