Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand and influence these systems naturally leads to considering problems of control and optimization. This book presents important topics in the areas of control of PDEs and of PDE-constrained optimization, covering the full spectrum from analysis to numerical realization and applications. Leading scientists address current topics such as non-smooth optimization, Hamilton-Jacobi-Bellmann equations, issues in optimization and control of stochastic partial...
Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand and influe...
Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand and influence these systems naturally leads to considering problems of control and optimization. This book presents important topics in the areas of control of PDEs and of PDE-constrained optimization, covering the full spectrum from analysis to numerical realization and applications. Leading scientists address current topics such as non-smooth optimization, Hamilton Jacobi Bellmann equations, issues in optimization and control of stochastic partial...
Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand and influe...