Most real world problems require the simultaneous optimization of multiple, competing, criteria (or objectives). In this case, the aim of a multiobjective resolution approach is to find a number of solutions known as Paretooptimal solutions. Evolutionary algorithms manipulate a population of solutions and thus are suitable to solve multi-objective optimization problems. In addition parallel evolutionary algorithms aim at reducing the computation time and solving large combinatorial optimization problems. In this work we study the performance of the "Balanced Explore Exploit Distributed...
Most real world problems require the simultaneous optimization of multiple, competing, criteria (or objectives). In this case, the aim of a multiobjec...