Symposium S, 'Microelectromechanical Systems - Materials and Devices IV', held November 29-December 3 at the 2010 MRS Fall Meeting in Boston, Massachusetts, focused on micro- and nanoelectromechanical systems (MEMS/NEMS), technologies which were spawned from the fabrication and integration of small-scale mechanical, electrical, thermal, magnetic, fluidic and optical sensors and actuators with micro-electronic components. MEMS and NEMS have enabled performance enhancements and manufacturing cost reductions in a number of applications, including optical displays, acceleration sensing,...
Symposium S, 'Microelectromechanical Systems - Materials and Devices IV', held November 29-December 3 at the 2010 MRS Fall Meeting in Boston, Massachu...
Microelectromechanical systems (MEMS) hold great promise for sensing and actuating on the micron scale. There is a hierarchy of increasing difficulty for placing MEMS devices in the field. Devices that do not allow contact between structural members rely mainly on mechanical properties of freestanding films. High-resolution techniques must be developed within the framework of MEMS to measure properties such as modulus and residual stress. When contact and rubbing contact are allowed, the complexities of adhesion and friction at the microscale must be understood and well controlled. Fluid...
Microelectromechanical systems (MEMS) hold great promise for sensing and actuating on the micron scale. There is a hierarchy of increasing difficulty ...