We present an introduction to Berkovich's theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analytic spaces by M. Temkin, and to etale cohomology by A. Ducros, as well as a short note by C. Favre on the topology of some Berkovich spaces. The second part focuses on applications to geometry. A second text by A. Ducros contains a new proof of the fact that the higher direct images of a coherent sheaf under a proper map are coherent, and B. Remy, A....
We present an introduction to Berkovich's theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first p...
Presenting the first systematic treatment of the behavior of Neron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Neron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples.
Neron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Neron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory....
Presenting the first systematic treatment of the behavior of Neron models under ramified base change, this book can be read as an introduction to v...
Antoine Chambert-Loir Johannes Nicaise Julien Sebag
This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration.
This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. With its extensiv...