* What is the essence of the similarity between linearly independent sets of columns of a matrix and forests in a graph? * Why does the greedy algorithm produce a spanning tree of minimum weight in a connected graph? * Can we test in polynomial time whether a matrix is totally unimodular? Matroid theory examines and answers questions like these. Seventy-five years of study of matroids has seen the development of a rich theory with links to graphs, lattices, codes, transversals, and projective geometries. Matroids are of fundamental importance in combinatorial optimization and...
* What is the essence of the similarity between linearly independent sets of columns of a matrix and forests in a graph? * Why does the greedy alg...
* What is the essence of the similarity between linearly independent sets of columns of a matrix and forests in a graph? * Why does the greedy algorithm produce a spanning tree of minimum weight in a connected graph? * Can we test in polynomial time whether a matrix is totally unimodular? Matroid theory examines and answers questions like these. Seventy-five years of study of matroids has seen the development of a rich theory with links to graphs, lattices, codes, transversals, and projective geometries. Matroids are of fundamental importance in combinatorial optimization and...
* What is the essence of the similarity between linearly independent sets of columns of a matrix and forests in a graph? * Why does the greedy alg...