A multiplicity of biotrophic micro-organisms interact with plants in nature, forming symbiotic relationships that range from mutualism to antagonism. Microorganisms that have adopted biotrophy as a lifestyle are able to colonize the plant and often to cross the plant cell boundaries by forming intracellular structures that are the site of nutrient uptake/exchange. To establish themselves within plant tissues, both mutualistic and pathogenic biotrophs need to overcome the plant defense response through an exchange of molecular signals. Our knowledge of the nature of these signals and their...
A multiplicity of biotrophic micro-organisms interact with plants in nature, forming symbiotic relationships that range from mutualism to antagonism. ...
Secretions and emissions in biological systems play important signaling roles within the organism but also in its communications with the surrounding environment. This volume brings together state-of-the-art information on the role of secretions and emissions in different organs and organisms ranging from flowers and roots of plants to nematodes and human organs. The plant chapters relate information regarding the biochemistry of flower volatiles and root exudates, and their role in attracting pollinators and soil microbial communities respectively. Microbial chapters explain the...
Secretions and emissions in biological systems play important signaling roles within the organism but also in its communications with the surroundi...
Plants are sessile, highly sensitive organisms that actively compete for environmental resources both above and below the ground. They assess their surroundings, estimate how much energy they need for particular goals, and then realise the optimum variant. They take measures to control certain environmental resources. They perceive themselves and can distinguish between 'self' and 'non-self'. They process and evaluate information and then modify their behaviour accordingly. These highly diverse competences are made possible by parallel sign(alling)-mediated communication processes within the...
Plants are sessile, highly sensitive organisms that actively compete for environmental resources both above and below the ground. They assess their su...
Since the concept of allelopathy was introduced almost 100 years ago, research has led to an understanding that plants are involved in complex communicative interactions. They use a battery of different signals that convey plant-relevant information within plant individuals as well as between plants of the same species or different species. The 13 chapters of this volume discuss all these topics from an ecological perspective. Communication between plants allows them to share physiological and ecological information relevant for their survival and ?tness. It is obvious that in these very...
Since the concept of allelopathy was introduced almost 100 years ago, research has led to an understanding that plants are involved in complex communi...
Our view of plants is changing dramatically. Rather than being only slowly responding organisms, their signaling is often very fast and signals, both of endogenous and exogenous origin, spread throughout plant bodies rapidly. Higher plants coordinate and integrate their tissues and organs via sophisticated sensory systems, which sensitively screen both internal and external factors, feeding them information through both chemical and electrical systemic long-distance communication channels. This revolution in our understanding of higher plants started some twenty years ago with the discovery...
Our view of plants is changing dramatically. Rather than being only slowly responding organisms, their signaling is often very fast and signals, both ...
Secretions and emissions in biological systems play important signaling roles within the organism but also in its communications with the surrounding environment. This volume brings together state-of-the-art information on the role of secretions and emissions in different organs and organisms ranging from flowers and roots of plants to nematodes and human organs. The plant chapters relate information regarding the biochemistry of flower volatiles and root exudates, and their role in attracting pollinators and soil microbial communities respectively. Microbial chapters explain the...
Secretions and emissions in biological systems play important signaling roles within the organism but also in its communications with the surroundi...
Plants are sessile, highly sensitive organisms that actively compete for environmental resources both above and below the ground. They assess their surroundings, estimate how much energy they need for particular goals, and then realise the optimum variant. They take measures to control certain environmental resources. They perceive themselves and can distinguish between 'self' and 'non-self'. They process and evaluate information and then modify their behaviour accordingly. These highly diverse competences are made possible by parallel sign(alling)-mediated communication processes within the...
Plants are sessile, highly sensitive organisms that actively compete for environmental resources both above and below the ground. They assess their su...
A multiplicity of biotrophic micro-organisms interact with plants in nature, forming symbiotic relationships that range from mutualism to antagonism. Microorganisms that have adopted biotrophy as a lifestyle are able to colonize the plant and often to cross the plant cell boundaries by forming intracellular structures that are the site of nutrient uptake/exchange. To establish themselves within plant tissues, both mutualistic and pathogenic biotrophs need to overcome the plant defense response through an exchange of molecular signals. Our knowledge of the nature of these signals and their...
A multiplicity of biotrophic micro-organisms interact with plants in nature, forming symbiotic relationships that range from mutualism to antagonism. ...
Endocytosis is a fundamental biological process, which is conserved among all eukaryotes. It is essential not only for many physiological and signalling processes but also for interactions between eukaryotic cells and pathogens or symbionts. This book covers all aspects of endocytosis in both lower and higher plants, including basic types of endocytosis, endocytic compartments, and molecules involved in endocytic internalization and recycling in diverse plant cell types. It provides a comparison with endocytosis in animals and yeast and discusses future prospects in this new and rapidly...
Endocytosis is a fundamental biological process, which is conserved among all eukaryotes. It is essential not only for many physiological and signalli...
This book is an overview of our current understanding of aluminium toxicity and tolerance in plants. It covers all relevant aspects from molecular and cellular biology, to genetic approaches, root biology and plant physiology. The contribution of arbuscular mycorrhizal fungi to alleviating aluminium toxicity is also discussed. Over 40% of total agricultural land resources are acidic in nature, with aluminium being the major toxicant. Plant roots are particularly susceptible to aluminium stress, but much of the complex mechanism underlying its toxicity and tolerance is unknown and aluminium...
This book is an overview of our current understanding of aluminium toxicity and tolerance in plants. It covers all relevant aspects from molecular ...