This book constitutes the refereed proceedings of the International Symposium on Integrated Uncertainty in Knowledge Modeling and Decision Making, IUKM 2011, held in Hangzhou, China, in October 2011. The 21 revised full papers presented together with 1 keynote lecture and 5 invited talks were carefully reviewed and selected from 55 submissions. The papers provide a wealth of new ideas and report both theoretical and applied research on integrated uncertainty modeling and management.
This book constitutes the refereed proceedings of the International Symposium on Integrated Uncertainty in Knowledge Modeling and Decision Making, IUK...
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers...
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or n...