In Quantitative Ammunition Selection, Charles Schwartz presents an accessible mathematical model that allows armed professionals and lawfully-armed citizens to evaluate the terminal ballistic preformance of self-defense ammunition using water as a valid ballistic test medium. Based upon a modified fluid dynamics equation that correlates highly (r=+0.94) to more than 700 points of manufacturer-and laboratory-test data, the quantitative model allows the armed professional to generate ballistic test results equivalent to those obtaines in calibrated 10 percent ordnance gelatin. Using data...
In Quantitative Ammunition Selection, Charles Schwartz presents an accessible mathematical model that allows armed professionals and lawfully-arme...
In Quantitative Ammunition Selection, Charles Schwartz presents an accessible mathematical model that allows armed professionals and lawfully-armed citizens to evaluate the terminal ballistic preformance of self-defense ammunition using water as a valid ballistic test medium. Based upon a modified fluid dynamics equation that correlates highly (r=+0.94) to more than 700 points of manufacturer-and laboratory-test data, the quantitative model allows the armed professional to generate ballistic test results equivalent to those obtaines in calibrated 10 percent ordnance gelatin. Using data...
In Quantitative Ammunition Selection, Charles Schwartz presents an accessible mathematical model that allows armed professionals and lawfully-arme...