Seit langem ist bekannt, daB man durch Anwendung der Modulfunktionen ei ner komplexen Variablen Slitze iiber die Darstellungsanzahlen natiirlicher Zah len durch positiv-definite ganzzahlige quadratische Formen beweisen kann. Die erzeugende Fourier-Reihe der Darstellungsanzahien ist eine Thetareihe und damit eine ganze Modulform. Uber diese gilt ein Reduktionstheorem, das besagt, daB sieh jede solche durch ein geeignetes lineares Aggregat Eisenstein scher Reihen auf eine ganze Spitzenform der gleichen Formenklasse additiv re duzieren lliBt. 1m wesentlichen nach diesem besonders von E. Hecke...
Seit langem ist bekannt, daB man durch Anwendung der Modulfunktionen ei ner komplexen Variablen Slitze iiber die Darstellungsanzahlen natiirlicher Zah...