Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics.
Key Features:
Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems.
A...
Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods...
Inferential Models: Reasoning with Uncertainty introduces the authors recently developed approach to inference: the inferential model (IM) framework. This logical framework for exact probabilistic inference does not require the user to input prior information. The authors show how an IM produces meaningful prior-free probabilistic inference at a high level.
The book covers the foundational motivations for this new IM approach, the basic theory behind its calibration properties, a number of...
A New Approach to Sound Statistical Reasoning
Inferential Models: Reasoning with Uncertainty introduces the author...