We study the optimal control of a class of resource allocation problems characterized by energy-latency trade-offs in Wireless Sensor Networks (WSN) using the framework of Discrete Event Systems. Our work is based on the observation that energy of wireless nodes can be greatly saved by introducing some delay of task completion time. Specifically, we consider a family of problems motivated by WSN such as Dynamic Transmission Control and Dynamic Voltage Scaling, where the objective is to minimize energy consumption while satisfying real-time operating constraints. Using advanced...
We study the optimal control of a class of resource allocation problems characterized by energy-latency trade-offs in Wireless Sensor Networ...