Geomaterials exhibit complex but rich mechanical behaviour with a variety of failure modes ranging from diffuse to localized deformation depending on stress, density, microstructure, and loading conditions. These failure modes are a result of an instability of material and/or geometric nature that can be studied within the framework of bifurcation theory. Degradation is another related phenomenon arising from cyclic loading, ageing, weathering, chemical attack, and capillary effects, among others. The methodology of analyzing the various types of instabilities is crucial in the adequate...
Geomaterials exhibit complex but rich mechanical behaviour with a variety of failure modes ranging from diffuse to localized deformation depending ...
Failure in Geomaterials offers a unified view of material failure as an instability of deformation modes framed within the theory of bifurcation.
Using mathematical rigor, logic, physical reasoning and basic principles of mechanics, the authors develop the fundamentals of failure in geomaterials based on the second-order work criterion. Various forms of rupture modes and material instabilities in granular materials are explored both analytically and numerically with lab experimental observations on sand as a backdrop. The authors provide a clear picture of inelastic...
Failure in Geomaterials offers a unified view of material failure as an instability of deformation modes framed within the theory of bifurca...