Rethinking Biased Estimation discusses methods to improve the accuracy of unbiased estimators used in many signal processing problems. At the heart of the proposed methodology is the use of the mean-squared error (MSE) as the performance criteria. One of the prime goals of statistical estimation theory is the development of performance bounds when estimating parameters of interest in a given model, as well as constructing estimators that achieve these limits. When the parameters to be estimated are deterministic, a popular approach is to bound the MSE achievable within the class of unbiased...
Rethinking Biased Estimation discusses methods to improve the accuracy of unbiased estimators used in many signal processing problems. At the heart of...
Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting recent theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing,...
Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics...