In real life often we need to make inferences about the behaviour of the unobserved responses for a model based on the observed responses from the model. Regression models with normal errors are commonly considered in prediction problems. However, when the underlying distributions have heavier tails, the normal errors assumption fails to allow sufficient probability in the tail areas to make allowance for any extreme value or outliers. As well, it cannot deal with the uncorrelated but not independent observations which are common in time series and econometric studies. In such situations, the...
In real life often we need to make inferences about the behaviour of the unobserved responses for a model based on the observed responses from the mod...
Small Area Estimation and Microsimulation Modeling is the first practical handbook that comprehensively presents modern statistical SAE methods in the framework of ultramodern spatial microsimulation modeling while providing the novel approach of creating synthetic spatial microdata. Along with describing the necessary theories and their advantages and limitations, the authors illustrate the practical application of the techniques to a large number of substantive problems, including how to build up models, organize and link data, create synthetic microdata, conduct analyses, yield...
Small Area Estimation and Microsimulation Modeling is the first practical handbook that comprehensively presents modern statistical SAE methods in ...